0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
public class LogMult{
public static int log(int x, int y) {
int res = 1;
if (x < 0 || y < 1) return 0;
else {
while (x > y) {
y = y*y;
res = 2*res;
}
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x,2);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 14 rules for P and 5 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
427_0_log_Load(x1, x2, x3, x4) → 427_0_log_Load(x2, x3, x4)
Filtered duplicate args:
427_0_log_Load(x1, x2, x3) → 427_0_log_Load(x2, x3)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > 1 && x1[0] < x0[0] →* TRUE)∧(427_0_log_Load(x1[0], x0[0]) →* 427_0_log_Load(x1[1], x0[1]))∧(x0[0] →* x0[1]))
(1) -> (0), if ((427_0_log_Load(x1[1] * x1[1], x0[1]) →* 427_0_log_Load(x1[0], x0[0]))∧(x0[1] →* x0[0]))
(1) (&&(>(x1[0], 1), <(x1[0], x0[0]))=TRUE∧427_0_log_Load(x1[0], x0[0])=427_0_log_Load(x1[1], x0[1])∧x0[0]=x0[1] ⇒ 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥NonInfC∧427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])∧(UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥))
(2) (>(x1[0], 1)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥NonInfC∧427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])∧(UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥))
(3) (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-3] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16 + (-2)bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]x1[0] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(8) (&&(>(x1[0], 1), <(x1[0], x0[0]))=TRUE∧427_0_log_Load(x1[0], x0[0])=427_0_log_Load(x1[1], x0[1])∧x0[0]=x0[1]∧427_0_log_Load(*(x1[1], x1[1]), x0[1])=427_0_log_Load(x1[0]1, x0[0]1)∧x0[1]=x0[0]1 ⇒ COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1])≥NonInfC∧COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1])≥427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])∧(UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥))
(9) (>(x1[0], 1)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[0], x0[0]), x0[0])≥NonInfC∧COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[0], x0[0]), x0[0])≥427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[0], x1[0]), x0[0]), x0[0])∧(UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥))
(10) (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] + [-1]x1[0] + x1[0]2 ≥ 0)
(11) (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] + [-1]x1[0] + x1[0]2 ≥ 0)
(12) (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] + [-1]x1[0] + x1[0]2 ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-3] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18 + (-2)bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[2 + (-1)bso_19] + [3]x1[0] + x1[0]2 ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18 + (4)bni_18] + [bni_18]x1[0] + [(2)bni_18]x0[0] ≥ 0∧[2 + (-1)bso_19] + [3]x1[0] + x1[0]2 ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(427_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + x2 + [-1]x1
POL(427_0_log_Load(x1, x2)) = [-1] + [-1]x2 + x1
POL(COND_427_1_MAIN_INVOKEMETHOD(x1, x2, x3)) = [-1] + x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(<(x1, x2)) = [-1]
POL(*(x1, x2)) = x1·x2
COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1]) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])
427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])
COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1]) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])
427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer