(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: LogMult
public class LogMult{

public static int log(int x, int y) {

int res = 1;

if (x < 0 || y < 1) return 0;
else {
while (x > y) {
y = y*y;
res = 2*res;
}
}
return res;

}





public static void main(String[] args) {
Random.args = args;

int x = Random.random();
log(x,2);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
LogMult.main([Ljava/lang/String;)V: Graph of 109 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 14 rules for P and 5 rules for R.


Combined rules. Obtained 1 rules for P and 0 rules for R.


Filtered ground terms:


427_0_log_Load(x1, x2, x3, x4) → 427_0_log_Load(x2, x3, x4)

Filtered duplicate args:


427_0_log_Load(x1, x2, x3) → 427_0_log_Load(x2, x3)

Combined rules. Obtained 1 rules for P and 0 rules for R.


Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(x1[0] > 1 && x1[0] < x0[0], 427_0_log_Load(x1[0], x0[0]), x0[0])
(1): COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1]) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[1] * x1[1], x0[1]), x0[1])

(0) -> (1), if ((x1[0] > 1 && x1[0] < x0[0]* TRUE)∧(427_0_log_Load(x1[0], x0[0]) →* 427_0_log_Load(x1[1], x0[1]))∧(x0[0]* x0[1]))


(1) -> (0), if ((427_0_log_Load(x1[1] * x1[1], x0[1]) →* 427_0_log_Load(x1[0], x0[0]))∧(x0[1]* x0[0]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1, x0), x0) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1, 1), <(x1, x0)), 427_0_log_Load(x1, x0), x0) the following chains were created:
  • We consider the chain 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0]), COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1]) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1]) which results in the following constraint:

    (1)    (&&(>(x1[0], 1), <(x1[0], x0[0]))=TRUE427_0_log_Load(x1[0], x0[0])=427_0_log_Load(x1[1], x0[1])∧x0[0]=x0[1]427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥NonInfC∧427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])∧(UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], 1)=TRUE<(x1[0], x0[0])=TRUE427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥NonInfC∧427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0])≥COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])∧(UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] + [-3] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16 + (-2)bni_16] + [(2)bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]x1[0] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)







For Pair COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1, x0), x0) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1, x1), x0), x0) the following chains were created:
  • We consider the chain 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0]), COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1]) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1]), 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0]) which results in the following constraint:

    (8)    (&&(>(x1[0], 1), <(x1[0], x0[0]))=TRUE427_0_log_Load(x1[0], x0[0])=427_0_log_Load(x1[1], x0[1])∧x0[0]=x0[1]427_0_log_Load(*(x1[1], x1[1]), x0[1])=427_0_log_Load(x1[0]1, x0[0]1)∧x0[1]=x0[0]1COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1])≥NonInfC∧COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1])≥427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])∧(UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥))



    We simplified constraint (8) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(x1[0], 1)=TRUE<(x1[0], x0[0])=TRUECOND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[0], x0[0]), x0[0])≥NonInfC∧COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[0], x0[0]), x0[0])≥427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[0], x1[0]), x0[0]), x0[0])∧(UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] + [-1]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] + [-1]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x1[0] + [-2] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] + [-1]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x1[0] ≥ 0∧x0[0] + [-3] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18 + (-2)bni_18] + [(2)bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[2 + (-1)bso_19] + [3]x1[0] + x1[0]2 ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18 + (4)bni_18] + [bni_18]x1[0] + [(2)bni_18]x0[0] ≥ 0∧[2 + (-1)bso_19] + [3]x1[0] + x1[0]2 ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1, x0), x0) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1, 1), <(x1, x0)), 427_0_log_Load(x1, x0), x0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]x1[0] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)

  • COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1, x0), x0) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1, x1), x0), x0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])), ≥)∧[(-1)Bound*bni_18 + (4)bni_18] + [bni_18]x1[0] + [(2)bni_18]x0[0] ≥ 0∧[2 + (-1)bso_19] + [3]x1[0] + x1[0]2 ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [2]   
POL(427_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + x2 + [-1]x1   
POL(427_0_log_Load(x1, x2)) = [-1] + [-1]x2 + x1   
POL(COND_427_1_MAIN_INVOKEMETHOD(x1, x2, x3)) = [-1] + x3 + [-1]x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(<(x1, x2)) = [-1]   
POL(*(x1, x2)) = x1·x2   

The following pairs are in P>:

COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1]) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])

The following pairs are in Pbound:

427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])
COND_427_1_MAIN_INVOKEMETHOD(TRUE, 427_0_log_Load(x1[1], x0[1]), x0[1]) → 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(*(x1[1], x1[1]), x0[1]), x0[1])

The following pairs are in P:

427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(&&(>(x1[0], 1), <(x1[0], x0[0])), 427_0_log_Load(x1[0], x0[0]), x0[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 427_1_MAIN_INVOKEMETHOD(427_0_log_Load(x1[0], x0[0]), x0[0]) → COND_427_1_MAIN_INVOKEMETHOD(x1[0] > 1 && x1[0] < x0[0], 427_0_log_Load(x1[0], x0[0]), x0[0])


The set Q is empty.

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE